Indiana Department of Education Academic Standards Course Framework ## MECHANICAL DRAFTING AND DESIGN II Mechanical Drafting and Design II covers working drawings both in detailing and assembly. Topics include: fastening devices, thread symbols and nomenclature, surface texture symbols, classes of fits, and the use of parts lists, title blocks and revision blocks. This course will also focus on advanced CAD features, including fundamentals of three-dimensional modeling for design. An overview of modeling, graphical manipulation, part structuring, coordinate system, and developing strategies of modeling will also be included. Advanced CAD will enable the student to make the transition from 2D drafting to 3D modeling. Students will draw and calculate three dimensional problems. Theory and methods include graphic developments and the relationships between points, lines and planes, curved lines and surfaces, intersections, and development. Computer software and hardware experiences, as they relate to drafting and design, will be covered. - DOE Code: 4838 - Recommended Grade Level: Grade 12 - Recommended Prerequisites: Mechanical Drafting and Design I - Credits: 2-3 credits per semester, maximum of 6 credits - Counts as a Directed Elective or Elective for the General, Core 40, Core 40 with Academic Honors and Core 40 with Technical Honors diplomas - This course is aligned with postsecondary courses for Dual Credit - o Ivy Tech - DESN 104 Mechanical Graphics - DESN 220 Advanced CAD - Vincennes University - DRAF 120 Computers for Technology - DRAF 150 Descriptive Geometry ## **Dual Credit** This course provides the opportunity for dual credit for students who meet postsecondary requirements for earning dual credit and successfully complete the dual credit requirements of this course. # **Application of Content and Multiple Hour Offerings** Intensive laboratory applications are a component of this course and may be either school based or work based or a combination of the two. Work-based learning experiences should be in a closely related industry setting. Instructors shall have a standards-based training plan for students participating in work-based learning experiences. When a course is offered for multiple hours per semester, the amount of laboratory application or work-based learning needs to be increased proportionally. # **Career and Technical Student Organizations (CTSOs)** Career and Technical Student Organizations are considered a powerful instructional tool when integrated into Career and Technical Education programs. They enhance the knowledge and skills students learn in a course by allowing a student to participate in a unique program of career and leadership development. Students should be encouraged to participate in SkillsUSA, the CTSO for this area. # **Content Standards** # **Domain – History of Tool Technology** **Core Standard 1** Students analyze the evolution of tool technology. ## **Standards** - MDII-1.1 Describe the evolution of machining - MDII-1.2 Research ISO standards - MDII-1.3 Identify casting processes - MDII-1.4 Research robotics used in tool and die processes # Domain – Utilize the Design Process and Tools in Mechanical Drafting **Core Standard 2** Students analyze the design process used in mechanical drafting applications. ## **Standards** - MDII-2.1 Conceptualize sketches and diagrams that demonstrate problem solving of programmatic issues - MDII-2.2 Utilize fundamentals of formal conceptual relationships, design methodology, and design process - MDII-2.3 Develop basic spatial and compositional ideas introduced through the study of typology, diagrams, and process of conceptualization - MDII-2.4 Demonstrate an ability to represent ideas in form and space, as a conceptual and cultural response to program, type, mechanical language and design methods - MDII-2.5 Analyze forces and loads on a structure - MDII-2.6 Identify line weights and how they relate to specific line types - MDII-2.7 Apply industry standards in mechanical drafting # **Domain – Mathematical Concepts Found in Mechanical Drafting** **Core Standard 3** Students apply and adapt math concepts to design processes. #### **Standards** - MDII-3.1 Calculate distances, surface area, volumes, slope, and angles - MDII-3.2 Understand and apply stress analysis to an object # **Domain – Solving Spatial Problems Using Descriptive Geometry** **Core Standard 4** Students analyze drawing concepts to solve spatial problems using descriptive geometry. #### **Standards** - MDII-4.1 Apply the rules of projection to solve for the other views given two views of lines, points, and/or surfaces - MDII-4.2 Determine graphically the true length of lines - MDII-4.3 Measure angles and distances to properly close polygons given the bearings and distances of all but one side of the polygon - MDII-4.4 Draw successive auxiliary views of objects given two views - MDII-4.5 Solve inclination problems - MDII-4.6 Determine the edge view of a surface given other views - MDII-4.7 Determine the point view of a line given other views - MDII-4.8 Draw the true shape of a surface given other view - MDII-4.9 Determine the visibility of two non intersecting objects - MDII-4.10 Determine the shortest distance from a point to a plan given other views MDII-4.11 Find the shortest distance between two parallel planes given other views MDII-4.12 Determine the shortest distance between two lines given other views MDII-4.13 Determine the intersection of a line and a surface MDII-4.14 Find the intersection of two surfaces MDII-4.15 Determine the angle between two lines MDII-4.16 Determine the dihedral angle between two surfaces MDII-4.17 Find the resultant force of three concurrent coplanar forces MDII-4.18 Determine the resultant force of three concurrent non-planar forces MDII-4.19 Design flat pattern layouts of circular and cone shaped objects - MDII-4.20 Develop flat pattern layouts of flat sided objects - MDII-4.21 Determine the visibility of a line intersecting a surface - MDII-4.22 Find the visibility of lines of an object # **Domain – Mechanical Graphics** **Core Standard 5** Students prove understanding of mechanical concepts that connect to industry standard drawings. ## **Standards** MDII-5.1 Identify and draw various fastening devices MDII-5.2 Draw thread symbols and understand thread nomenclature MDII-5.3 Develop proper surface texture symbols MDII-5.4 Calculate classes of fits MDII-5.5 Develop a parts list MDII-5.6 Complete accurate title and revision blocks MDII-5.7 Research and utilize various standard blocks MDII-5.8 Develop detailed part and assembly drawings ## Domain - Solving Advanced Design Challenges in Mechanical Drafting MDII-6.7 Demonstrate an understanding of terminology MDII-5.9 Determine tolerances on parts Core Standard 6 Students create 3D CAD drawings to validate their knowledge of mechanical drafting. ## **Standards** - MDII-6.1 Understand the similarities and differences between 2D and 3D models MDII-6.2 Utilizing precision measuring tools to determine correct measurements MDII-6.3 Manage 3D space MDII-6.4 Create, modify, and use 3D wire frame, surface, and solid models MDII-6.5 Construct any surface or solid model MDII-6.6 Create production drawings of the 3D models - **Domain Careers in Mechanical Drafting** **Core Standard 7** Students evaluate and explore mechanical careers and opportunities. # **Standards** MDII-7.1 Compare mechanical drafting careers | MDII-7.2 | Investigate mechanical drafting opportunities offered by a technical school or college | |----------|--| | MDII-7.3 | Determine mechanical drafting occupation wages/salaries | | MDII-7.4 | Explore mechanical drafting job outlook information | | MDII-7.5 | Participates job shadowing of an mechanical job | | MDII-7.6 | Research international mechanical drafting opportunities |